TITLE 327 WATER POLLUTION CONTROL BOARD

SECOND NOTICE OF COMMENT PERIOD

LSA Document #06-573

DEVELOPMENT OF AMENDMENTS TO RULES CONCERNING E. COLI BACTERIA IN WATERS OF THE STATE

PURPOSE OF NOTICE

The Indiana Department of Environmental Management (IDEM) has developed draft rule language for amendments to 327 IAC 2-1-6, 327 IAC 2-1.5-8, and 327 IAC 5-10-6 concerning the compliance with the bacteriological criteria and the application of a single sample maximum limitation of 235 most probable number (mpn) or colony forming units (cfu)/100 ml of Escherichia coli (E. coli) bacteria to waters of the state. Sample variability as well as the lack of precision of the current test method can make meeting the E. coli limits from wastewater effluent difficult. The rule language has been amended to more accurately account for the effect of sample variability on compliance. By this notice, IDEM is soliciting public comment on the draft rule language. IDEM seeks comment on the affected citations listed and any other provisions of Title 327 that may be affected by this rulemaking.

HISTORY

First Notice of Comment Period: December 20, 2006, Indiana Register (DIN: 20061220-IR-327060573FNA).

CITATIONS AFFECTED: 327 IAC 2-1-6; 327 IAC 2-1.5-8; 327 IAC 5-10-6.

AUTHORITY: IC 13-14-9; IC 13-18-3.

SUBJECT MATTER AND BASIC PURPOSE OF RULEMAKING

Basic Purpose and Background

All waters of the state in Indiana are designated for full body contact recreational use. In support of this designation, Indiana rules contain surface water quality criteria for E. coli bacteria that are in effect during the April through October recreational season. <u>327 IAC 2-1-6(d)</u> reads as follows:

- "(d) This subsection establishes bacteriological quality for recreational uses. In addition to subsection (a), the criteria in this subsection are to be used to evaluate waters for full body contact recreational uses, to establish wastewater treatment requirements, and to establish effluent limits during the recreational season, which is defined as the months of April through October, inclusive. E. coli bacteria, using membrane filter (MF) count, shall not exceed:
 - (1) one hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period; and
 - (2) two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period.

If a geometric mean cannot be calculated because five (5) equally spaced samples are not available, then the criterion stated in subdivision (2) must be met.".

327 IAC 2-1.5-8(e) reads as follows:

- "(e) This subsection establishes bacteriological quality for recreational uses as follows:
- (1) In addition to subsection (b), the criteria in this subsection shall be used to:
 - (A) evaluate waters for full body contact recreational uses:
 - (B) establish wastewater treatment requirements; and
 - (C) establish effluent limits during the recreational season, which is defined as the months of April through October, inclusive.
- (2) E. coli bacteria, using membrane filter (MF) count, shall not exceed:
 - (A) one hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period; and
 - (B) two hundred thirty-five (235) per one hundred (100) millilliters in any one (1) sample in a thirty (30) day period.

Page 1

If a geometric mean cannot be calculated because five (5) equally spaced samples are not available, then the criterion stated in subdivision (2)(B) must be met.".

The daily maximum, single sample effluent limitation for E. coli is included in National Pollutant Discharge Elimination System (NPDES) permits for most wastewater treatment plants. For a variety of reasons, many NPDES permits are appealed due to the expected inability to meet the single sample maximum limits for E. coli. The permittees feel the need to protect their legal rights with regard to noncompliance; yet, the many appeals have hindered permit renewals and created costly legal expenses for both IDEM and the affected permittees.

Due to the nature and limitations of bacterial sampling and analysis, it is not possible for operators of wastewater treatment facilities to ensure compliance with a single sample maximum at all times. Currently available testing methods are severely limited because they carry a significant likelihood of "false positive" noncompliance decisions based on single samples. This stems from the inherent spatial and temporal variability of bacteria populations in treated effluents. In other words, the testing methods may produce falsely high values that could place facilities in noncompliance even when the wastewater treatment plant is being operated properly. Because of these limitations in the currently available/approved testing methods for E. coli, Congress is requiring EPA to develop a more accurate method to better assess bacterial water quality and support protection of recreational uses.

The present primary contact E. coli standard is based on research carried out by U.S. EPA in the early 1980s (U.S. EPA, Health Effects Criteria for Recreational Water, August 1984). In 1986, U.S. EPA recommended national E. coli standards for freshwater recreation based on those earlier studies. The standards included both a geometric mean value derived directly from the results of the research and single sample maximum value based on a theoretical statistical extrapolation from the research for varying levels of risk. Indiana adopted for all waterways the most stringent values, intended by U.S. EPA for designated bathing beaches.

In subsequent guidance documents and regulations, U.S. EPA has noted that the single sample maximum values were intended as a tool for beach managers to evaluate when beaches should be closed due to high bacteria values. EPA acknowledged some confusion in the application of the single sample maximum to permit limits and other compliance measures:

"The 'single sample maximum' values allow beach managers to quantitatively determine what an unacceptably high value is. The 'single sample maximum' was never to [sic] intended to be a 'value not to be exceeded' when referring to attainment decisions and National Pollutant Discharge Elimination System (NPDES) permitting under the Clean Water Act." (Implementation Guidance for Ambient Water Quality Criteria for Bacteria, November 2003 Draft).

"Other than in the beach notification and closure decision context, the geometric mean is the more relevant value for ensuring that appropriate actions are taken to protect and improve water quality because it is a more reliable measure, being less subject to random variation, and more directly linked to the underlying studies on which the 1986 bacteria criteria were based." (Water Quality Standards for Coastal and Great Lakes Recreation Waters; November 16, 2004; FR 04-25303)

U.S. EPA gives states discretion in the use of single sample maximums in permit limits and recommends against determining compliance based upon a single sample. Therefore, if federal guidance related to bacterial water quality criteria does not require or support the use of a single sample maximum for determining compliance with NPDES permits, Indiana rules may be due for amendment.

In June 2003, U.S. EPA published a document, Bacterial Water Quality Standards for Recreational Waters, Freshwater and Marine Waters, Status Report, that provides an informative summary of state and tribal standards. Relevant parts of the report include: (1) eighteen states, including Indiana, have adopted E. coli standards for freshwater; (2) six states use enterococci for freshwater; (3) the other 26 states still use fecal coliforms or total coliforms; (4) most states (31 of 50) apply some type of data exclusion rule whereby five to 20 percent of the data can exceed some predetermined value.

The document demonstrated that most states determine a wastewater facility's NPDES permit compliance based upon the geometric mean of a minimum number of effluent samples, 7-day averages of samples, or by excluding a percent of the data due to testing method variability. Each of these approaches allows wastewater treatment operators to function within acceptable and protective permit parameters without being subject to noncompliance due to the variability inherent in E. coli testing results.

IC 13-14-9-4 Identification of Restrictions and Requirements Not Imposed under Federal Law

No element of the draft rule imposes either a restriction or a requirement on persons to whom the draft rule applies that is not imposed under federal law. There is no requirement imposed under this rule because it provides a mechanism for communities to follow with regard to compliance with the E. coli limit. It is a community's choice whether to avail itself of the mechanism.

Potential Fiscal Impact

Because a community affected by E. coli compliance may choose to use the mechanism developed through this rulemaking, the rule imposes no requirements with a fiscal impact. However, members taking advantage of the program could see reduced costs from some of the potential incentives. In order to avail itself of the choice, a community may increase its sampling and laboratory costs but may also see a reduction in compliance activity costs if the community had been subject to enforcement action.

Public Participation and Workgroup Information

An external workgroup has met to discuss issues involved in this rulemaking and develop the rule amendments. The workgroup is made up of IDEM staff, representatives of the various affected stakeholders, notably municipal NPDES permittees and consultants, and representatives of the environmental community.

If you wish to provide comments to the workgroup on the rulemaking, attend meetings, or have suggestions related to the workgroup process, please contact MaryAnn Stevens, Rules Section, Office of Water Quality at

(317) 232-8635 or (800) 451-6027 (in Indiana). Please provide your name, phone number, and e-mail address, if applicable, where you can be contacted. The public is also encouraged to submit comments and questions to members of the workgroup who represent their particular interests in the rulemaking.

SUMMARY/RESPONSE TO COMMENTS FROM THE FIRST COMMENT PERIOD

IDEM requested public comment from December 20, 2006, through February 3, 2007, regarding amendments to rules concerning the application of the single sample maximum limitation for Escherichia coli (E. Coli) bacteria of 235 most probable number (mpn) or colony forming units (cfu)/100 ml to waters of the state and, specifically, with compliance with the E. coli limit in wastewater effluent. IDEM received comment letters from the following parties by the comment period deadline:

City of Angola (ANG)

City of Elkhart (ELK)

City of Goshen (GOS)

City of Indianapolis (IND)

Following is a summary of the comments received and IDEM's responses thereto:

Comment: Occasional exceedances of the single sample maximum do not necessarily indicate inadequate wastewater treatment but rather reflect the limitations inherent in the process of sampling and analysis of individual bacteriological samples due to the random variations in biological systems. Either of the following of IDEM's suggested alternative solutions would be acceptable for basing E. coli compliance: (1) Weekly average (geometric mean) not to exceed 235 mpn or cfu per 100 ml; or (2) Not exceeding 235 in more than 10% of the discharge samples in a 30 day period. (ANG, ELK, GOS, IND)

Response: IDEM understands that occasional exceedances of the single sample maximum do not necessarily indicate inadequate wastewater treatment but rather reflect the limitations inherent in the process of sampling and analysis of individual bacteriological samples due to the random variations in biological systems and appreciates your support in consideration of alternative solutions acceptable for basing E. coli compliance.

Comment: The language of alternative 2 needs to be clarified as to whether the 30 day period is a calendar month or a 30 day compliance period. (ELK)

Response: IDEM agrees and has clarified the language.

Comment: For the purposes of beach notification and closure determinations, the daily maximum water quality standard for E. coli should be retained. (ANG, GOS)

Response: IDEM agrees that, for the purposes of beach notification and closure determinations, the daily maximum water quality standard for E. coli should be retained.

Comment: For the purpose of applying and administering the modified rule, there should be blanket implementation of the rule change so that when the rule change becomes effective it will supersede language and requirements in existing permits and then, as permits come up for renewal, the new language will be inserted. (ANG)

Response: IDEM agrees that as permits come up for renewal new rule language will be inserted. However, IDEM cannot promulgate a rule that supercedes effective permits. Rule changes must be incorporated in permits. Therefore, IDEM will notify communities about the rulemaking and will consider compliance to be met if communities taking at least 10 samples per month meet E. coli limits 90% of the time.

Comment: While rules are being amended regarding the E. coli single sample maximum issue, E. coli approved testing methodologies should be clarified in the rules as well. (IND)

Response: IDEM is not listing specific methodologies to allow for evolving technologies.

Comment: A cap should not be applied to the 10% data exclusion rule by combining it with a single sample maximum of a higher value, such as 2,000 or 2,400 cfu/100 ml. There is no scientific validity to any substitute number that may be selected to gauge proper operation of a wastewater treatment plant. In most cases, IDEM has the necessary tools at its disposal to investigate excursions above the effluent limit and to determine whether the plant was operated according to permit requirements. (IND)

Response: IDEM is not proposing a cap in the rule language changes.

Comment: The rule amendments should not include an increase in sampling frequency in exchange for the 10% data exclusion rule. Each facility's permit currently establishes sampling frequency. More frequent sampling is not required to ensure protection of public health and the environment. Operators of small treatment plants who want to use the 10% data exclusion rule would need to take at least 10 representative samples per month, but this should be the choice of those operators. (IND)

Response: IDEM agrees that operators of treatment plants who want to use the 10% data exclusion rule must take at least 10 representative samples per month, but the choice of using the 10% data exclusion is up to the operators.

DIN: 20070606-IR-327060573SNA

REQUEST FOR PUBLIC COMMENTS

At this time, IDEM solicits the following:

(1) The submission of alternative ways to achieve the purpose of the rule.

(2) The submission of suggestions for the development of draft rule language.

Mailed comments should be addressed to:

#06-573(WPCB) [E. coli Rule]

MaryAnn Stevens Mail Code 65-40

Rules Section

Office of Water Quality

Indiana Department of Environmental Management

100 North Senate Avenue

Indianapolis, Indiana 46204-2251.

Hand delivered comments will be accepted by the receptionist on duty at the twelfth floor reception desk, Office of Water Quality, Indiana Government Center-North, 100 North Senate Avenue, Room N1255, Indianapolis, Indiana. Comments also may be submitted by facsimile to (317) 232-8406, Monday through Friday, between 8:15 a.m. and 4:45 p.m. Please confirm the timely receipt of faxed comments by calling the Office of Water Quality, Rules Section at (317) 233-8903. Please note it is not necessary to follow a faxed comment letter with a copy of the letter submitted through the postal system.

COMMENT PERIOD DEADLINE

Comments must be postmarked, faxed, or hand delivered by July 6, 2007.

Additional information regarding the NPDES program and discharge permit limits for E. coli may be obtained from Catherine Hess, Permits Technical Support Section Chief, Office of Water Quality, (317) 232-8704 or (800) 451-6027. Additional information regarding this rulemaking action may be obtained from MaryAnn Stevens, Rules Section, Office of Water Quality, (317) 232-8635 or (800) 451-6027 (in Indiana).

DRAFT RULE

SECTION 1. 327 IAC 2-1-6 IS AMENDED TO READ AS FOLLOWS:

327 IAC 2-1-6 Minimum surface water quality standards

Authority: <u>IC 13-14-8</u>; <u>IC 13-14-9</u>; <u>IC 13-18-3</u> Affected: <u>IC 13-18-4</u>; <u>IC 13-30-2-1</u>; <u>IC 14-22-9</u>

Sec. 6. (a) The following are minimum surface water quality conditions:

- (1) All surface waters at all times and at all places, including waters within the mixing zone, shall meet the minimum conditions of being free from substances, materials, floating debris, oil, or scum attributable to municipal, industrial, agricultural, and other land use practices, or other discharges that do any of the following:
 - (A) Will settle to form putrescent or otherwise objectionable deposits.
 - (B) Are in amounts sufficient to be unsightly or deleterious.
 - (C) Produce:
 - (i) color;
 - (ii) visible oil sheen;
 - (iii) odor; or
 - (iv) other conditions;

in such degree as to create a nuisance.

- (D) Are in concentrations or combinations that will cause or contribute to the growth of aquatic plants or algae to such degree as to:
- (i) create a nuisance;
- (ii) be unsightly; or
- (iii) otherwise impair the designated uses.
- (E) Are in amounts sufficient to be acutely toxic to, or to otherwise severely injure or kill, aquatic life, other animals, plants, or humans. To assure protection of aquatic life, concentrations of toxic substances shall not exceed the final acute value (FAV = 2 (AAC)) in the undiluted discharge or the acute aquatic criterion (AAC) outside the zone of initial dilution or, if applicable, the zone of discharge-induced mixing:
- (i) for certain substances, an AAC is established and set forth in subdivision (3), Table 6-1 and subdivision (3), Table 6-2 (which table incorporates subdivision (4), Table 6-3);
- (ii) for substances for which an AAC is not specified in subdivision (3), Table 6-1 or subdivision (3), Table 6-2, an AAC can be calculated by the commissioner using the procedures in section 8.2 of this rule; and (iii) the AAC determined under item (i) or (ii) may be modified on a site-specific basis to reflect local conditions in accordance with section 8.9 of this rule.

This clause shall not apply to the chemical control of plants and animals when that control is performed in compliance with approval conditions specified by the Indiana department of natural resources as provided by IC 14-22-9.

- (2) At all times, all surface waters outside of mixing zones shall be free of substances in concentrations that on the basis of available scientific data are believed to be sufficient to injure, be chronically toxic to, or be carcinogenic, mutagenic, or teratogenic to humans, animals, aquatic life, or plants. To assure protection against the adverse effects identified in this subdivision, the following requirements are established:
 - (A) A toxic substance or pollutant shall not be present in such waters in concentrations that exceed the most stringent of the following continuous criterion concentrations (CCCs):
 - (i) A chronic aquatic criterion (CAC) to protect aquatic life from chronic toxic effects.
 - (ii) A terrestrial life cycle safe concentration (TLSC) to protect terrestrial organisms from toxic effects that may result from the consumption of aquatic organisms or water from the water body.
 - (iii) A human life cycle safe concentration (HLSC) to protect human health from toxic effects that may result from the consumption of aquatic organisms or drinking water from the water body.
 - (iv) For carcinogenic substances, a criterion to protect human health from unacceptable cancer risk of greater than one (1) additional occurrence of cancer per one hundred thousand (100,000) population.
 - (B) For certain substances, one (1) or more of the CCCs identified in clause (A) are established and set forth in subdivision (3), Table 6-1 and subdivision (3), Table 6-2 (which table incorporates subdivision (4), Table 6-3).
 - (C) For substances for which one (1) or more of the CCCs identified in clause (A) are not specified in subdivision (3), Table 6-1 or subdivision (3), Table 6-2, such criterion or criteria may be calculated by the commissioner using the corresponding procedures prescribed by sections 8.3 through 8.6 of this rule.
 - (D) A CCC determined under clause (B) or (C) may be modified on a site-specific basis to reflect local conditions in accordance with section 8.9 of this rule.
 - (E) The CAC and TLSC for a substance apply in all surface waters outside a mixing zone for a discharge of that substance. Similarly, in waters where a public water system intake is not present or is unaffected by the discharge of a substance, the HLSC and the carcinogenic criterion for that substance based on consumption of organisms from the water body and only incidental ingestion of water shall apply to all surface waters outside the mixing zone for a discharge of that substance. In surface waters where a public water system intake is present, the HLSC and the carcinogenic criterion for a substance based on consumption of organisms and potable water from the water body shall apply at the point of the public water system intake.
- (3) The following establishes surface water quality criteria for specific substances:

Table 6-1
Surface Water Quality Criteria for Specific Substances

AAC (Maximum)			CCC	
		Outside of N	Mixing Zone	Point of Water Intake
		Aquatic Life (CAC)	Human Health	Human Health
Substances		(4-Day Average)	(30-Day Average)	(30-Day Average)
Metals (µg/l)				_
(Total recoverable)				
Antimony			45,000 (T)	146 (T)
Arsenic (III)	#	#	0.175 (C)	0.022 (C)
Barium				1,000 (D)
Beryllium			1.17 (C)	0.068 (C)
Cadmium	#	#		10 (D)
Chromium (III)	#	#	3,433,000 (T)	170,000 (T)
Chromium (VI)	#	#		50 (D)
Copper	#	#		
Lead	#	#		50 (D)
Mercury\$	2.4	0.012	0.15 (T)	0.14 (T)
Nickel	#	#	100 (T)	13.4 (T)
Selenium	130*	35		10 (D)
Silver	#			50 (D)
Thallium			48 (T)	13 (T)
Zinc	#	#		
Organics (µg/l)				

Indiana Register				
Acrolein			780 (T)	320 (T)
Acrylonitrile			6.5 (C)	0.58 (C)
Aldrin\$	1.5*		0.00079 (C)	0.00074 (C)
Benzene			400 (C)	6.6 (C)
Benzidine			0.0053 (C)	0.0012 (C)
Carbon Tetrachloride			69.4 (C)	4.0 (C)
Chlordane\$	1.2*	0.0043	0.0048 (C)	0.0046 (C)
Chlorinated Benzenes			, ,	` ,
Monochlorobenzene				488 (T)
1,2,4,5-Tetrachlorobenzene \$			48 (T)	38 (T)
Pentachlorobenzene \$			85 (T)	74 (T)
Hexachlorbenzene\$			0.0074 (C)	0.0072 (C)
Chlorinated Ethanes			()	()
1,2-dichloroethane			2,430 (C)	9.4 (C)
1,1,1-trichloroethane			1,030,000 (T)	18,400 (T)
1,1,2-trichloroethane			418 (C)	6.0 (C)
1,1,2,2-tetrachloroethane			107 (C)	1.7 (C)
Hexachloroethane			87.4 (C)	19 (C)
Chlorinated Phenols			3 (J)	(5)
2,4,5-trichlorophenol				2,600 (T)
2,4,6-trichlorophenol			36 (C)	12 (C)
Chloroalkyl Ethers				(0)
bis(2-chloroisopropyl) ether			4,360 (T)	34.7 (T)
bis(chloromethyl) ether			0.018 (C)	0.000038 (C)
bis(2-chloroethyl) ether			13.6 (C)	0.3 (C)
Chloroform			157 (C)	1.9 (C)
Chlorpyrifos	0.083	0.041	101 (0)	1.0 (0)
DDT\$	0.55*	0.0010	0.00024 (C)	0.00024 (C)
Dichlorobenzenes	0.00	0.0010	2,600 (T)	400 (T)
Dichlorobenzidine			0.2 (C)	0.1 (C)
1,1-dichloroethylene			18.5 (C)	0.33 (C)
2,4-dichlorophenol			10.5 (0)	3,090 (T)
Dichloropropenes			14,100 (T)	87 (T)
Dieldrin\$	1.3*	0.0019	0.00076 (C)	0.00071 (C)
2,4-dinitrotoluene	1.5	0.0013	91 (C)	1.1 (C)
Dioxin (2,3,7,8-TCDD)\$			0.0000001 (C)	0.0000001 (C)
1,2-diphenylhydrazine			5.6 (C)	0.422 (C)
Endosulfan	0.11*	0.056	159 (T)	74 (T)
Endrin\$	0.09*	0.0023	100 (1)	1.0 (D)
Ethylbenzene	0.00	0.0023	3,280 (T)	1,400 (T)
Fluoranthene			54 (T)	42 (T)
Halomethanes			157 (C)	1.9 (C)
Heptachlor\$	0.26*	0.0038	0.0028 (C)	0.0028 (C)
Hexachlorobutadiene\$	0.20	0.0030	500 (C)	4.47 (C)
Hexachlorocyclohexane (HCH)			300 (0)	4.47 (0)
alpha HCH\$			0.31 (C)	0.09 (C)
beta HCH\$			0.51 (C) 0.55 (C)	0.09 (C) 0.16 (C)
gamma HCH (Lindane)\$	1.0*	0.080	0.63 (C)	
Technical HCH\$	1.0	0.000	, ,	0.19 (C) 0.12 (C)
Hexachlorocyclopentadiene			0.41 (C)	
			520,000 (T)	206 (T) 5,200 (T)
Isophorone			320,000 (1)	
Nitrophonols				19,800 (T)
Nitrophenols 4,6-dinitro-o-cresol			765 (T)	12 / /T\
Dinitrophenol			14,300 (T)	13.4 (T)
Nitrosamines			14,300 (1)	70 (T)
rviu osarriiries				

indiana Register				
N-nitrosodiethylamine			12.4 (C)	0.008 (C)
N-nitrosodimethylamine			160 (C)	0.014 (C)
N-nitrosodibutylamine			5.9 (C)	0.064 (C)
N-nitrosodiphenylamine			161 (C)	49 (C)
N-nitrosopyrrolidine			919 (C)	0.16 (C)
Parathion	0.065	0.013		
Pentachlorophenol	e ^(1.005 [pH]-4.830)	e ^(1.005 [pH]-5.290)		1,000 (T)
Phenol				3,500 (T)
Phthalate Esters				, , ,
Dimethyl phthalate			2,900,000 (T)	313,000 (T)
Diethyl phthalate			1,800,000 (T)	350,000 (T)
Dibutyl phthalate			154,000 (T)	34,000 (T)
Di-2-ethylhexyl phthalate			50,000 (T)	15,000 (T)
Polychlorinated Biphenyls (PCBs)\$		0.014	0.00079 (C)	0.00079 (C)
Carcinogenic Polynuclear Aromatic Hydrocarbons (PAHs)			0.31 (C)	0.028 (C)
Tetrachloroethylene			88.5 (C)	8 (C)
Toluene			424,000 (T)	14,300 (T)
Toxaphene\$	0.73	0.0002	0.0073 (C)	0.0071 (C)
Trichloroethylene			807 (C)	27 (C)
Vinyl Chloride			5,246 (C)	20 (C)
Other Substances				
Asbestos (fibers/liter)				300,000 (C)
Chlorides (mg/l)	860	230		
Chlorine				
(Total Residual) (µg/l)	19	11		
Chlorine ^a (mg/l)				
(intermittent, total residual)		0.2		
Cyanide (Free) (µg/I)	22	5.2		
Cyanide (Total) (µg/l)				200 (D)
Nitrate-N + Nitrite-N (mg/l)				10 (D)
Nitrite-N (mg/l)				1.0 (D)
	/			Olive Director in

Fluoride shall not exceed two (2.0) mg/l in all surface waters outside of the mixing zone except the Ohio River and Interstate Wabash River where it shall not exceed one (1.0) mg/l outside of the mixing zone.

Sulfates shall not exceed one thousand (1,000) mg/l in all surface waters outside of the mixing zone.

#The AAC and CAC for this substance are established in Table 6-2.

Table 6-2
Surface Water Quality Criteria for Specific Substances

Substances	AAC (Maximum) (µg/l)	AAC Conversion Factors	CAC (4-Day Average) (µg/l)	CAC Conversion Factors
Metals				
(dissolved) ^[1]				
Arsenic (III)	WER[2](360)	1.000	WER[2](190)	1.000
Cadmium	WER[2](e ^{(1.128} [In(hardness)]-3.828))	1.136672-[(In hardness)(0.041838)]	WER[2](e ^{(0.7852} [In(hardness)]-3.490))	1.101672-[(ln hardness)(0.041838)]

^{*}One-half (½) of the final acute value (FAV) as calculated by procedures developed by U.S. EPA in 1980. This value would correspond to acute aquatic values calculated using IDEM procedures or U.S. EPA procedures developed in 1985 in which the calculated FAV is divided by two (2) to reduce acute toxicity.

T derived from threshold toxicity.

C derived from nonthreshold cancer risk.

D derived from drinking water standards, equal to or less than threshold toxicity.

^{\$}This substance is a bioaccumulative chemical of concern.

^aTo be considered an intermittent discharge, total residual chlorine shall not be detected in the discharge for a period of more than forty (40) minutes in duration, and such periods shall be separated by at least five (5) hours.

Chromium	WER[2](e ^{(0.819}	0.316	WER[2](e ^{(0.8190}	0.860
(III)	[In(hardness)]+3.688))		[ln(hardness)]+1.561)	
Chromium (VI)	WER[2](16)	0.982	WER[2](11)	0.962
Copper	WER[2](e ^{(0.9422}	0.960	$WER^{[2]}(e^{(0.8545}$	0.960
	[In(hardness)]-1.464))	0.000	[ln(hardness)]-1.465))	0.000
Lead	WER[2](e ^{(1.273}	1.46203-[(In	WER[2](e ^{(1.273}	1.46203-[(ln
Lead	[ln(hardness)]-1.460))	hardness)(0.145712)]	[In(hardness)]-4.705))	hardness)(0.145712)]
Nickel	$WER^{[2]}(e^{(0.8460})$	0.998	$WER^{[2]}(e^{(0.8460}$	0.997
MICKEI	[ln(hardness)]+3.3612))	0.990	[In(hardness)]+1.1645))	0.991
	WER[2](e ^{(1.72}			
Silver	[In(hardness)]-6.52)/2 ^[3])	0.85		
Zinc	$WER^{[2]}(e^{(0.8473})$	0.978	$WER^{[2]}(e^{(0.8473}$	0.986
	[ln(hardness)]+0.8604))	0.970	[ln(hardness)]+0.7614))	0.900

^[1] The AAC and CAC columns of this table contain total recoverable metals criteria (numeric and hardness-based). The criterion for the dissolved metal is calculated by multiplying the appropriate conversion factor by the AAC or CAC. This dissolved AAC or CAC shall be rounded to two (2) significant digits, except when the criteria are used as intermediate values in a calculation, such as in the calculation of water quality-based effluent limitations (WQBELs).

Table 6-3

Metals Concentrations in Micrograms Per Liter; Hardness in Milligrams Per Liter CaCO₃¹

		enic						mium										
	(1)	II)	Cadr	nium	(II	I)	(\	/I)	Cop	per	Le	ad	Nic	kel	Silv	ver	Zi	nc
Hardness	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC	AAC	CAC
50	360	190	1.7	0.62	310	100	16	11	8.9	6.3	30	1.2	790	87	0.52	-	64	58
100	360	190	3.7	1.0	550	180	16	11	17	11	65	2.5	1400	160	1.7	-	110	100
150	360	190	5.7	1.4	760	250	16	11	25	16	100	3.9	2000	220	3.5	-	160	150
200	360	190	7.8	1.7	970	310	16	11	33	21	140	5.3	2500	280	5.7	-	210	190
250	360	190	10	2.0	1200	380	16	11	40	25	170	6.7	3100	340	8.3	-	250	230
300	360	190	12	2.3	1300	440	16	11	48	29	210	8.1	3600	400	11	-	290	270
350	360	190	14	2.6	1500	500	16	11	55	33	240	9.5	4100	450	15	-	330	300
400	360	190	17	2.9	1700	550	16	11	63	37	280	11	4600	510	19	-	370	340
450	360	190	19	3.1	1900	610	16	11	70	41	320	12	5100	560	23	-	410	370
500	360	190	21	3.4	2100	670	16	11	78	45	350	14	5500	610	27	_	450	410

^[1] The dissolved metals criteria in this table have been rounded to two (2) significant digits in accordance with subdivision (3), Table 6-2. The equations and conversion factors in subdivision (3), Table 6-2 shall be used instead of the criteria in this table when dissolved metals criteria are used as intermediate values in a calculation, such as in the calculation of water quality-based effluent limitations WQBELs.

(b) This subsection establishes minimum surface water quality for aquatic life. In addition to subsection (a),

^[2] A value of one (1) shall be used for the water-effect ratio (WER) unless an alternate value is established under section 8.9 of this rule.

One-half (½) of the final acute value FAV as calculated by procedures developed by U.S. EPA in 1980. This value would correspond to acute aquatic values calculated using IDEM procedures or U.S. EPA procedures developed in 1985 in which the calculated FAV is divided by two (2) to reduce acute toxicity.

⁽⁴⁾ The following establishes dissolved acute aquatic criteria AAC and ehronic aquatic criteria CAC for certain metals at selected hardness values calculated from the equations and conversion factors in subdivision (3), Table 6-2 and using a value of one (1) for the WER:

subdivisions (1) through (5) are established to ensure conditions necessary for the maintenance of a well-balanced aquatic community. The following are applicable at any point in the waters outside of the mixing zone:

- (1) There shall be no substances that:
 - (A) impart unpalatable flavor to food fish; or
 - **(B)** result in offensive odors in the vicinity of the water.
- (2) No pH values below six (6.0) or above nine (9.0), except daily fluctuations that:
 - (A) exceed pH nine (9.0); and
 - (B) are correlated with photosynthetic activity;

shall be permitted.

- (3) Concentrations of dissolved oxygen shall:
 - (A) average at least five (5.0) milligrams per liter per calendar day; and shall
 - (B) not be less than four (4.0) milligrams per liter at any time.
- (4) The following are conditions for temperature:
 - (A) There shall be no abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
 - (B) The normal daily and seasonal temperature fluctuations that existed before the addition of heat due to other than natural causes shall be maintained.
 - (C) The maximum temperature rise at any time or place above natural temperatures shall not exceed:
 - (i) five (5) degrees Fahrenheit (two and eight-tenths (2.8) degrees Celsius) in streams; and
 - (ii) three (3) degrees Fahrenheit (one and seven-tenths (1.7) degrees Celsius) in lakes and reservoirs.
 - (D) Water temperatures shall not exceed the maximum limits in the following table during more than one percent (1%) of the hours in the twelve (12) month period ending with any month. At no time shall the water temperature at such locations exceed the maximum limits in the following table by more than three (3) degrees Fahrenheit (one and seven-tenths (1.7) degrees Celsius):

Table 6-4
Ohio River Main Stem °F(°C) Other Indiana Streams °F(°C)

January	50 (10.0)	50 (10.0)
February	50 (10.0)	50 (10.0)
March	60 (15.6)	60 (15.6)
April	70 (21.1)	70 (21.1)
May	80 (26.7)	80 (26.7)
June	87 (30.6)	90 (32.2)
July	89 (31.7)	90 (32.2)
August	89 (31.7)	90 (32.2)
September	87 (30.7)	90 (32.2)
October	78 (25.6)	78 (25.5)
November	70 (21.1)	70 (21.1)
December	57 (14.0)	57 (14.0)

- (5) The following criteria will be used to regulate ammonia:
 - (A) Except for waters covered in clause (B), at all times, all surface waters outside of mixing zones shall be free of substances in concentrations that, on the basis of available scientific data, are believed to be sufficient to:
 - (i) injure:
 - (ii) be chronically toxic to; or
 - (iii) be carcinogenic, mutagenic, or teratogenic to;

humans, animals, aquatic life, or plants.

(B) For those waters listed in subsection (c), the following ammonia criteria will apply outside the mixing zone:

Maximum Ammonia Concentrations

(Unionized Ammonia as N)*

(mg/l)
Temperature (°C)

				` '				
рН	0	5	10	15	20	25	30	
6.5	0.0075	0.0106	0.0150	0.0211	0.0299	0.0299	0.0299	•
6.6	0.0092	0.0130	0.0183	0.0259	0.0365	0.0365	0.0365	
6.7	0.0112	0.0158	0.0223	0.0315	0.0444	0.0444	0.0444	

Date: Apr 04,2022 1:54:27AM EDT DIN: 20070606-IR-327060573SNA

Indiana R	egister						
6.8	0.0135	0.0190	0.0269	0.0380	0.0536	0.0536	0.0536
6.9	0.0161	0.0228	0.0322	0.0454	0.0642	0.0642	0.0642
7.0	0.0191	0.0270	0.0381	0.0539	0.0761	0.0761	0.0761
7.1	0.0244	0.0316	0.0447	0.0631	0.0892	0.0892	0.0892
7.2	0.0260	0.0367	0.0518	0.0732	0.1034	0.1034	0.1034
7.3	0.0297	0.0420	0.0593	0.0837	0.1183	0.1183	0.1183
7.4	0.0336	0.0474	0.0669	0.0946	0.1336	0.1336	0.1336
7.5	0.0374	0.0528	0.0746	0.1054	0.1489	0.1489	0.1489
7.6	0.0411	0.0581	0.0821	0.1160	0.1638	0.1638	0.1638
7.7	0.0447	0.0631	0.0892	0.1260	0.1780	0.1780	0.1780
7.8	0.0480	0.0678	0.0958	0.1353	0.1911	0.1911	0.1911
7.9	0.0510	0.0720	0.1017	0.1437	0.2030	0.2030	0.2030
8.0	0.0536	0.0758	0.1070	0.1512	0.2135	0.2135	0.2135
8.1	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.2	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.3	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.4	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.5	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.6	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.7	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.8	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137
8.9	0.0537	0.0758	0.1071	0.1513	0.2137	0.2137	0.2137

^{***}To calculate total ammonia, divide the number in the table by the value determined by: 1/(10^{pKa-pH} + 1).

0.1513

0.2137

0.2137

0.2137

0.1071

Where: $pK_a = 0.09018 + (2729.92/(T + 273.2))$

0.0758

pH = pH of water

 $T = {}^{\circ}C$

0.0537

9.0

24-Hour Average Ammonia Concentrations (Unionized Ammonia as N)*** (mg/l)

Temperature (°C)

Temperature (0)									
рН	0	5	10	15	20	25	30		
6.5	0.0005	0.0008	0.0011	0.0015	0.0015	0.0015	0.0015		
6.6	0.0007	0.0010	0.0014	0.0019	0.0019	0.0019	0.0019		
6.7	0.0009	0.0012	0.0017	0.0024	0.0024	0.0024	0.0024		
6.8	0.0011	0.0015	0.0022	0.0031	0.0031	0.0031	0.0031		
6.9	0.0014	0.0019	0.0027	0.0038	0.0038	0.0038	0.0038		
7.0	0.0017	0.0024	0.0034	0.0048	0.0048	0.0048	0.0048		
7.1	0.0022	0.0031	0.0043	0.0061	0.0061	0.0061	0.0061		
7.2	0.0027	0.0038	0.0054	0.0077	0.0077	0.0077	0.0077		
7.3	0.0034	0.0048	0.0068	0.0097	0.0097	0.0097	0.0097		
7.4	0.0043	0.0061	0.0086	0.0122	0.0122	0.0122	0.0122		
7.5	0.0054	0.0077	0.0108	0.0153	0.0153	0.0153	0.0153		
7.6	0.0068	0.0097	0.0136	0.0193	0.0193	0.0193	0.0193		
7.7	0.0086	0.0122	0.0172	0.0242	0.0242	0.0242	0.0242		
7.8	0.0092	0.0130	0.0184	0.0260	0.0260	0.0260	0.0260		
7.9	0.0098	0.0138	0.0196	0.0276	0.0276	0.0276	0.0276		
8.0	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.1	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.2	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.3	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.4	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.5	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		
8.6	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294		

Date: Apr 04,2022 1:54:27AM EDT DIN: 20070606-IR-327060573SNA

8.7	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294
8.8	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294
8.9	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294
9.0	0.0103	0.0146	0.0206	0.0294	0.0294	0.0294	0.0294

^{***}To calculate total ammonia, divide the number in the table by the value determined by: 1/(10^{pKa-pH} + 1).

Where: $pK_3 = 0.09018 + (2729.92/(T + 273.2))$

pH = pH of water

 $T = {}^{\circ}C$

- (c) This subsection establishes surface water quality for cold-water fish. In addition to subsections (a) through and (b), the following criteria are established to ensure conditions necessary for the maintenance of a well-balanced, cold-water fish community and are applicable at any point in the waters outside of the mixing zone:
 - (1) Waters:
 - (A) designated as salmonid waters; and
 - **(B)** that shall be protected for cold-water fish;
 - are those waters designated by the Indiana department of natural resources for put-and-take trout fishing.
 - (2) In the waters listed in subdivision (1), dissolved oxygen concentrations shall not be less than six (6.0) milligrams per liter at any time and shall not be less than seven (7.0) milligrams per liter in areas where spawning occurs during the spawning season and in areas used for imprinting during the time salmonids are being imprinted.
 - (3) In those waters listed in subdivision (1), the maximum temperature rise above natural shall not exceed two
 - (2) degrees Fahrenheit (one and one-tenth (1.1) degrees Celsius) at any time or place and, unless due to natural causes, the temperature shall not exceed the following:
 - (A) Seventy (70) degrees Fahrenheit (twenty-one and one-tenth (21.1) degrees Celsius) at any time.
 - (B) Sixty-five (65) degrees Fahrenheit (eighteen and three-tenths (18.3) degrees Celsius) during spawning and imprinting periods.
- (d) This subsection establishes bacteriological quality for recreational uses **during the recreational season** as **follows:**
 - (1) The recreational season is defined as the months of April through October, inclusive.
 - (2) In addition to subsection (a), the criteria in this subsection are to be used to do the following:
 - (A) Evaluate waters for full body contact recreational uses. to
 - (B) Establish wastewater treatment requirements. and to
 - (C) Establish effluent limits during the recreational season. which is defined as the months of April through October, inclusive.
 - (3) For full body contact recreational uses, E. coli bacteria using membrane filter (MF) count, shall not exceed the following:
 - (1) (A) One hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period. and
 - (2) (B) Two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period.

If a geometric mean cannot be calculated because five (5) equally spaced samples are not available, then the criterion stated in subdivision (2) clause (B) must be met.

- (4) For demonstrating compliance with wastewater treatment requirements, sanitary wastewater dischargers shall ensure the following:
 - (A) The concentration of E. coli in the undiluted discharge does not exceed one hundred twenty-five (125) cfu or mpn per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.
 - (B) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for E. coli in a calendar month exceed two hundred thirty-five (235) cfu or mpn per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.
- (5) Effluent limits to implement the criteria in subdivision (3) during the recreational season shall be established in NPDES permits by incorporating the following that are to be applied to the undiluted discharge:

DIN: 20070606-IR-327060573SNA

(A) The concentration of E. coli in the undiluted discharge shall not exceed one hundred twenty-five (125) cfu or mpn per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.

- (B) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for E. coli in a calendar month exceed two hundred thirty-five (235) cfu or mpn per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.
- (e) This subsection establishes surface water quality for public water supply. In addition to subsections (a) and (d), the following criteria are established to protect the surface water quality at the point at which water is withdrawn for treatment for public supply:
 - (1) The coliform bacteria group shall not exceed the following:
 - (A) Five thousand (5,000) per one hundred (100) milliliters as a monthly average value (either MPN or MF count).
 - (B) Five thousand (5,000) per one hundred (100) milliliters in more than twenty percent (20%) of the samples examined during any month.
 - (C) Twenty thousand (20,000) per one hundred (100) milliliters in more than five percent (5%) of the samples examined during any month.
 - (2) Taste and odor producing substances, other than naturally occurring, shall not interfere with the production of a finished water by conventional treatment consisting of **the following**:
 - (A) Coagulation.
 - (B) Sedimentation.
 - (C) Filtration. and
 - (D) Disinfection.
 - (3) The concentrations of either chlorides or sulfates shall not exceed two hundred fifty (250) milligrams per liter unless due to naturally occurring sources.
 - (4) The concentration of dissolved solids shall not exceed seven hundred fifty (750) milligrams per liter unless due to naturally occurring sources. A specific conductance of one thousand two hundred (1,200) micromhos per centimeter (at twenty-five (25) degrees Celsius) may be considered equivalent to a dissolved solids concentration of seven hundred fifty (750) milligrams per liter.
 - (5) Surface waters shall be considered acceptable for public water supply if radium-226 and strontium-90 are present in amounts not exceeding three (3) and ten (10) picocuries per liter, respectively. In the known absence of strontium-90 and alpha emitters, the water supply is acceptable when the gross beta concentrations do not exceed one thousand (1,000) picocuries per liter.
 - (6) Chemical constituents in the waters shall not be present in such levels as to prevent, after conventional treatment, meeting the drinking water standards contained in <u>327 IAC 8-2</u>, due to other than natural causes.
- (f) This subsection establishes surface water quality for industrial water supply. In addition to subsection (a), the criterion to ensure protection of water quality at the point at which water is withdrawn for use (either with or without treatment) for industrial cooling and processing is that, other than from naturally occurring sources, the dissolved solids shall not exceed seven hundred fifty (750) milligrams per liter at any time. A specific conductance of one thousand two hundred (1,200) micromhos per centimeter (at twenty-five (25) degrees Celsius) may be considered equivalent to a dissolved solids concentration of seven hundred fifty (750) milligrams per liter.
- (g) This subsection establishes surface water quality for agricultural uses. The criteria to ensure water quality conditions necessary for agricultural use are the same as those in subsection (a).
- (h) This subsection establishes surface water quality for limited uses. The quality of waters classified for limited uses under section 3(a)(5) of this rule shall, at a minimum, meet the following criteria:
 - (1) The criteria contained in subsection (a).
 - (2) The criteria contained in subsection (d).
 - (3) The criteria contained in subsection (f), where applicable.
 - (4) The waters must be aerobic at all times.
 - (5) Notwithstanding subdivisions (1) through (4), the quality of a limited use stream at the point where it becomes physically or chemically capable of supporting a higher use or at its interface with a higher use water segment shall meet the criteria that are applicable to the higher use water.
- (i) This subsection establishes surface water quality for exceptional uses. Waters classified for exceptional uses warrant extraordinary protection. Unless criteria are otherwise specified on a case-by-case basis, the quality of all waters designated for exceptional use shall be maintained without degradation.

(Water Pollution Control Board; 327 IAC 2-1-6; filed Sep 24, 1987, 3:00 p.m.: 11 IR 581; filed Feb 1, 1990, 4:30

p.m.: 13 IR 1020; errata, 13 IR 1861; errata filed Jul 6, 1990, 5:00 p.m.: 13 IR 2003; filed Feb 26, 1993, 5:00 p.m.: 16 IR 1725; errata filed May 7, 1993, 4:00 p.m.: 16 IR 2189; filed Jan 14, 1997, 12:00 p.m.: 20 IR 1348; errata filed Aug 11, 1997, 4:15 p.m.: 20 IR 3376; filed Feb 14, 2005, 10:05 a.m.: 28 IR 2047; errata filed Apr 6, 2006, 2:48 p.m.: 29 IR 2546; errata, 29 IR 3027)

SECTION 2. 327 IAC 2-1.5-8 IS AMENDED TO READ AS FOLLOWS:

327 IAC 2-1.5-8 Minimum surface water quality criteria

Authority: <u>IC 13-14-8</u>; <u>IC 13-14-9</u>; <u>IC 13-18-3</u> Affected: <u>IC 13-18-4</u>; <u>IC 13-30-2-1</u>; <u>IC 14-22-9</u>

Sec. 8. (a) All surface water quality criteria in this section, except those provided in subsection (b)(1), will cease to be applicable when the stream flows are less than the applicable stream design flow for the particular criterion as determined under 327 IAC 5-2-11.4.

- (b) The following are minimum surface water quality conditions:
- (1) All surface waters within the Great Lakes system at all times and at all places, including waters within the mixing zone, shall meet the minimum conditions of being free from substances, materials, floating debris, oil, or scum attributable to municipal, industrial, agricultural, and other land use practices, or other discharges that do any of the following:
 - (A) Will settle to form putrescent or otherwise objectionable deposits.
 - (B) Are in amounts sufficient to be unsightly or deleterious.
 - (C) Produce:
 - (i) color;
 - (ii) visible oil sheen;
 - (iii) odor; or
 - (iv) other conditions;

in such degree as to create a nuisance.

- (D) Are in concentrations or combinations that will cause or contribute to the growth of aquatic plants or algae to such degree as to:
- (i) create a nuisance;
- (ii) be unsightly; or
- (iii) otherwise impair the designated uses.
- (E) Are in amounts sufficient to be acutely toxic to, or to otherwise severely injure or kill, aquatic life, other animals, plants, or humans. To assure protection of aquatic life, the waters shall meet the following requirements:
- (i) Concentrations of toxic substances shall not exceed the CMC or SMC outside the zone of initial dilution or the final acute value (FAV = 2 (CMC) or 2 (SMC)) in the undiluted discharge unless, for a discharge to a receiving stream or Lake Michigan, an alternate mixing zone demonstration is conducted and approved in accordance with 327 IAC 5-2-11.4(b)(4), in which case, the CMC or SMC shall be met outside the applicable alternate mixing zone:
- (AA) for certain substances, a CMC is established and set forth in subdivision (3), Table 8-1 (which table incorporates subdivision (4), Table 8-2);
- (BB) for substances for which a CMC is not specified in subdivision (3), Table 8-1, a CMC shall be calculated by the commissioner using the procedures in section 11 of this rule, or, if the minimum data requirements to calculate a CMC are not met, an SMC shall be calculated using the procedures in section 12 of this rule; and
- (CC) the CMC or SMC determined under subitem (AA) or (BB) may be modified on a site-specific basis to reflect local conditions in accordance with section 16 of this rule.
- (ii) A discharge shall not cause acute toxicity, as measured by whole effluent toxicity tests, at any point in the water body. Compliance with this criterion shall be demonstrated if a discharge does not exceed one and zero-tenths (1.0) TU in the undiluted discharge. For a discharge into a receiving stream or Lake Michigan, for which an alternate mixing zone demonstration is conducted and approved in accordance with 327 IAC 5-2-11.4(b)(4), compliance with this criterion shall be demonstrated if three-tenths (0.3) TU is not exceeded outside the applicable alternate mixing zone.

This clause shall not apply to the chemical control of plants and animals when that control is performed in compliance with approval conditions specified by the Indiana department of natural resources as provided by IC 14-22-9.

- (2) At all times, all surface waters outside of the applicable mixing zones determined in accordance with section 7 of this rule shall be free of substances in concentrations that, on the basis of available scientific data, are believed to be sufficient to injure, be chronically toxic to, or be carcinogenic, mutagenic, or teratogenic to humans, animals, aquatic life, or plants. To assure protection against the adverse effects identified in this subdivision, a toxic substance or pollutant shall not be present in such waters in concentrations that exceed the most stringent of the following:
 - (A) A CCC or an SCC to protect aquatic life from chronic toxic effects as follows:
 - (i) For certain substances, a CCC is established and set forth in subdivision (3), Table 8-1 (which table incorporates subdivision (4), Table 8-2).
 - (ii) For substances for which a CCC is not specified in subdivision (3), Table 8-1, a CCC shall be calculated by the commissioner using the procedures in section 11 of this rule, or, if the minimum data requirements to calculate a CCC are not met, an SCC shall be calculated using the procedures in section 12 of this rule.
 - (iii) The CCC or SCC determined under item (i) or (ii) may be modified on a site-specific basis to reflect local conditions in accordance with section 16 of this rule.
 - (iv) To assure protection of aquatic life, a discharge shall not cause chronic toxicity, as measured by whole effluent toxicity tests, outside of the applicable mixing zone. Compliance with this criterion shall be demonstrated if the water body does not exceed one and zero-tenths (1.0) TU_c at the edge of the mixing zone.
 - (B) An HNC or HNV to protect human health from adverse noncancer effects that may result from the consumption of aquatic organisms or drinking water from the water body determined as follows:
 - (i) For certain substances, an HNC is established and set forth in subdivision (5), Table 8-3.
 - (ii) For substances for which an HNC is not specified in subdivision (5), Table 8-3, an HNC shall be calculated by the commissioner using the procedures in section 14 of this rule, or, if the minimum data requirements to calculate an HNC are not met, an HNV shall be calculated using the procedures in section 14 of this rule.
 - (iii) The HNC or HNV determined under item (i) or (ii) may be modified on a site-specific basis to reflect local conditions in accordance with section 16 of this rule.
 - (iv) The HNC-nondrinking or HNV-nondrinking for a substance shall apply to all surface waters outside the applicable mixing zone for a discharge of that substance. The HNC-drinking or HNV-drinking shall apply at the point of the public water system intake.
 - (C) For carcinogenic substances, an HCC or HCV to protect human health from unacceptable cancer risk of greater than one (1) additional occurrence of cancer per one hundred thousand (100,000) population as follows:
 - (i) For certain substances, an HCC is established and set forth in subdivision (5), Table 8-3.
 - (ii) For substances for which an HCC is not specified in subdivision (5), Table 8-3, an HCC shall be calculated by the commissioner using the procedures in section 14 of this rule or, if the minimum data requirements to calculate an HCC are not met, an HCV shall be calculated using the procedures in section 14 of this rule.
 - (iii) The HCC or HCV determined under item (i) or (ii) may be modified on a site-specific basis to reflect local conditions in accordance with section 16 of this rule.
 - (iv) The HCC-nondrinking or HCV-nondrinking for a substance shall apply to all surface waters outside the applicable mixing zone for a discharge of that substance. The HCC-drinking or HCV-drinking shall apply at the point of the public water system intake.
 - (D) A WC to protect avian and mammalian wildlife populations from adverse effects that may result from the consumption of aquatic organisms or water from the water body as follows:
 - (i) For certain substances, a WC is established and set forth in subdivision (6), Table 8-4.
 - (ii) For substances for which a WC is not specified in subdivision (6), Table 8-4, a WC shall be calculated by the commissioner using the procedures in section 15 of this rule or, if the minimum data requirements to calculate a WC are not met, a WV may be calculated using the procedures in section 15 of this rule.
 - (iii) The WC or WV determined under item (i) or (ii) may be modified on a site-specific basis to reflect local conditions in accordance with section 16 of this rule.
- (3) The following establishes surface water quality criteria for protection of aquatic life:

Table 8-1 Surface Water Quality Criteria for Protection of Aquatic Life^[1]

CN/C

CAS Number	Substances	CMC (Maximum) (µg/l)	Conversion Factors	CCC (4-Day Average) (µg/l)	CCC Conversion Factors
	Metals (dissolved) ^[2]				
7440382	Arsenic (III)	WER ^[3] (339.8)	1.000	WER ^[3] (147.9)	1.000

Indiana IX	cgistoi					
7440439	Cadmium	$WER^{[3]}(e^{(1.128})$	1.136672-[(ln	$WER^{[3]}(e^{(0.7852}$	1.101672-[(ln	
7440433	Caumum	[ln(hardness)]-3.6867)) h	nardness)(0.041838)]	[ln(hardness)]-2.715))	hardness)(0.041838	
7440470	Ob (III)	$WER^{[3]}(e^{(0.819)})$	0.040	$WER^{[3]}(e^{(0.819})$	0.000	
7440473	Chromium (III)	[ln(hardness)]+3.7256))	0.316	[ln(hardness)]+0.6848))	0.860	
7440473	Chromium (VI)	WER ^[3] (16.02)	0.982	WER ^[3] (10.98)	0.962	
	_	$WER^{[3]}(e^{(0.9422)})$		$WER^{[3]}(e^{(0.8545)})$		
7440508	Copper	[In(hardness)]-1.700))	0.960	[ln(hardness)]-1.702))	0.960	
7439976	Mercury	WER ^[3] (1.694)	0.85	WER ^[3] (0.9081)	0.85	
	·	WER ^[3] (e ^{(0.846}		WER ^[3] (e ^(0.846)		
7440020	Nickel	[ln(hardness)]+2.255))	0.998	[ln(hardness)]+0.0584))	0.997	
7782492	Selenium			5	0.922	
7440000	7'	$WER^{[3]}(e^{(0.8473})$	0.070	WER ^[3] (e ^{(0.8473}	0.000	
7440666	Zinc	[ln(hardness)]+0.884))	0.978	[In(hardness)]+0.884))	0.986	
	Organics (total)					
60571	Dieldrin	0.24	NA	0.056	NA	
72208	Endrin	0.086	NA	0.036	NA	
56382	Parathion	0.065	NA	0.013	NA	
87865	Pentachlorophenol ^[4]	e ^(1.005[pH]-4.869)	NA	e ^(1.005[pH]-5.134)	NA	
	Other Substances					
	Chlorides (total)	860000	NA	230000	NA	
	Chlorine (total residual)	19	NA	11	NA	
	Chlorine (intermittent, total residual) [5]	200	NA		NA	
57125	Cyanide (free)	22	NA	5.2	NA	

^[1] Aquatic organisms should not be affected unacceptably if the four (4) day average concentration of any substance in this table does not exceed the CCC more than once every three (3) years on the average and if the one (1) hour average concentration does not exceed the CMC more than once every three (3) years on the average, except possibly where a commercially or recreationally important species is very sensitive.

Table 8-2

Metals (Concentratio	ons in Micrograms Per Li	ter; Hardne	ss in Milligra	ıms Per Lit	er CaCO ₃ 1		
Arsenic	Cadmium	Chromium Chromium	Copper	Mercury	Nickel	Selenium	Zinc	

The CMC and CCC columns of this table contain total recoverable metals criteria (numeric and hardness-based). The criterion for the dissolved metal is calculated by multiplying the appropriate conversion factor by the CMC or CCC. This dissolved CMC or CCC shall be rounded to two (2) significant digits, except when the criteria are used as intermediate values in a calculation, such as in the calculation of water quality-based effluent limitations (WQBELs).

^[3] A value of one (1) shall be used for the WER unless an alternate value is established under section 16 of this rule.

^[4] A CMC and CCC calculated for pentachlorophenol using the equation in this table shall be rounded to two (2) significant digits, except when the criteria are used as intermediate values in a calculation, such as in the calculation of WQBELs.

^[5] To be considered an intermittent discharge, total residual chlorine shall not be detected in the discharge for a period of more than forty (40) minutes in duration, and such periods shall be separated by at least five (5) hours.

⁽⁴⁾ The following establishes dissolved CMCs and CCCs for certain metals at selected hardness values calculated from the equations and conversion factors in subdivision (3), Table 8-1 and using a value of one (1) for the WER, where applicable:

	(II	I)			(II	I)	(\	′I)										
Hardness	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC	CMC	CCC
50	340	150	2.0	1.3	320	42	16	11	7.0	5.0	1.4	0.77	260	29	_	4.6	65	66
100	340	150	4.3	2.2	570	74	16	11	13	9.0	1.4	0.77	470	52	_	4.6	120	120
150	340	150	6.6	3.0	790	100	16	11	20	13	1.4	0.77	660	73	_	4.6	170	170
200	340	150	9.0	3.7	1,000	130	16	11	26	16	1.4	0.77	840	93	_	4.6	210	210
250	340	150	12	4.4	1,200	160	16	11	32	20	1.4	0.77	1,000	110	_	4.6	250	260
300	340	150	14	5.0	1,400	180	16	11	38	23	1.4	0.77	1,200	130	_	4.6	300	300
350	340	150	17	5.6	1,600	210	16	11	44	26	1.4	0.77	1,400	150	_	4.6	340	340
400	340	150	19	6.2	1,800	230	16	11	50	29	1.4	0.77	1,500	170	_	4.6	380	380
450	340	150	22	6.8	2,000	250	16	11	55	32	1.4	0.77	1,700	190	_	4.6	420	420
500	340	150	24	7.3	2,100	280	16	11	61	35	1.4	0.77	1,800	200	_	4.6	460	460

^[1] The dissolved metals criteria in this table have been rounded to two (2) significant digits in accordance with subdivision (3), Table 8-1. The equations and conversion factors in subdivision (3), Table 8-1 shall be used instead of the criteria in this table when dissolved metals criteria are used as intermediate values in a calculation, such as in the calculation of WQBELs.

(5) The following establishes surface water quality criteria for protection of human health:

Table 8-3
Surface Water Quality Criteria for Protection of Human Health^[1]

		Human Noncancer Criteria (HNC)		Human Cancer Criteria (HCC)		
CAS	0.1.4	D: 1: / //	Nondrinking	5	Nondrinking	
Number	Substances	Drinking (µg/l)	(µg/l)	Drinking (µg/l)	(µg/l)	
	Metals (total recoverable)					
7439976	Mercury (including methyl mercury)	0.0018	0.0018			
	Organics (total)					
71432	Benzene	19	510	12	310	
57749	Chlordane	0.0014	0.0014	0.00025	0.00025	
108907	Chlorobenzene	470	3,200			
50293	DDT	0.002	0.002	0.00015	0.00015	
60571	Dieldrin	0.00041	0.00041	6.5×10^{-6}	6.5×10^{-6}	
105679	2,4-dimethylphenol	450	8,700			
51285	2,4-dinitrophenol	55	2,800			
118741	Hexachlorobenzene	0.046	0.046	0.00045	0.00045	
67721	Hexachloroethane	6	7.6	5.3	6.7	
58899	Lindane	0.47	0.5			
75092	Methylene chloride	1,600	90,000	47	2600	
1336363	PCBs (class)			6.8×10^{-6}	6.8×10^{-6}	
1746016	2,3,7,8-TCDD (dioxin)	6.7×10^{-8}	6.7×10^{-8}	8.6×10^{-9}	8.6×10^{-9}	
108883	Toluene	5,600	51,000			
8001352	Toxaphene			6.8×10^{-5}	6.8×10^{-5}	
79016	Trichloroethylene			29	370	
	Other Substances					
57125	Cyanide (total)	600	48,000			
[4]	- ,					

^[1]The HNC and HCC are thirty (30) day average criteria.

Table 8-4
Surface Water Quality Criteria for Protection of Wildlife^[1]

CAS Number	Substances	Wildlife Criteria (µg/l)		
	Metals (total recoverable)			
7439976	Mercury (including methylmercury)	0.0013		
	Organics (total)			

⁽⁶⁾ The following establishes surface water quality criteria for protection of wildlife:

50293	DDT and metabolites	1.1 x 10 ⁻⁵
1336363	PCBs (class)	1.2×10^{-4}
1746016	2, 3, 7, 8-TCDD (dioxin)	3.1×10^{-9}

^[1]The WC are thirty (30) day average criteria.

- (c) This subsection establishes minimum surface water quality criteria for aquatic life. In addition to the criteria in subsection (b), this subsection ensures conditions necessary for the maintenance of a well-balanced aquatic community. The following conditions are applicable at any point in the waters outside of the applicable mixing zone, as determined in accordance with section 7 of this rule:
 - (1) There shall be no substances that:
 - (A) impart unpalatable flavor to food fish; or
 - (B) result in offensive odors in the vicinity of the water.
 - (2) No pH values below six (6.0) or above nine (9.0), except daily fluctuations that:
 - (A) exceed pH nine (9.0); and
 - (B) are correlated with photosynthetic activity;

shall be permitted.

- (3) Concentrations of dissolved oxygen shall:
 - (A) average at least five (5.0) milligrams per liter per calendar day; and shall
 - **(B)** not be less than four (4.0) milligrams per liter at any time.
- (4) The following are conditions for temperature:
 - (A) There shall be no abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
 - (B) The normal daily and seasonal temperature fluctuations that existed before the addition of heat due to other than natural causes shall be maintained.
 - (C) Water temperatures shall not exceed the maximum limits in the following table during more than one percent (1%) of the hours in the twelve (12) month period ending with any month. At no time shall the water temperature at such locations exceed the maximum limits in the following table by more than three (3) degrees Fahrenheit (one and seven-tenths (1.7) degrees Celsius):

Table 8-5
Maximum Instream Water Temperatures

Month	St. Joseph River Tributary to Lake Michigan Upstream of the Twin Branch Dam °F(°C)	All Other Indiana Streams in the Great Lakes System °F(°C)
January	50 (10)	50 (10)
February	50 (10)	50 (10)
March	55 (12.8)	60 (15.6)
April	65 (18.3)	70 (21.1)
May	75 (23.9)	80 (26.7)
June	85 (29.4)	90 (32.2)
July	85 (29.4)	90 (32.2)
August	85 (29.4)	90 (32.2)
September	84 (29.4)	90 (32.2)
October	70 (21.1)	78 (25.5)
November	60 (15.6)	70 (21.1)
December	50 (10)	57 (14.0)

- (D) The following temperature criteria shall apply to Lake Michigan:
- (i) In all receiving waters, the points of measurement normally shall be in the first meter below the surface at such depths necessary to avoid thin layer surface warming due to extreme ambient air temperatures, but, where required to determine the true distribution of heated wastes and natural variations in water temperatures, measurements shall be at a greater depth and at several depths as a thermal profile.
- (ii) There shall be no abnormal temperature changes so as to be injurious to fish, wildlife, or other aquatic life, or the growth or propagation thereof. In addition, plume interaction with the bottom shall:
- (AA) be minimized; and shall
- (BB) not injuriously affect fish, shellfish, and wildlife spawning or nursery areas.
- (iii) The normal daily and seasonal temperature fluctuations that existed before the addition of heat shall be maintained.
- (iv) At any time and at a maximum distance of a one thousand (1,000) foot arc inscribed from a fixed point

adjacent to the discharge or as agreed upon by the commissioner and federal regulatory agencies, **the following:**

- (AA) The receiving water temperature shall not be more than three (3) degrees Fahrenheit (one and seven-tenths (1.7) degrees Celsius) above the existing natural water temperature. and (BB) Thermal discharges to Lake Michigan shall comply with the following maximum temperature requirements:
- (aa) Thermal discharges to Lake Michigan shall not raise the maximum temperature in the receiving water above those listed in the following table, except to the extent the permittee adequately demonstrates that the exceedance is caused by the water temperature of the intake water:

Table 8-6
Maximum Water Temperatures

°F(°C)
45 (7)
45 (7)
45 (7)
55 (13)
60 (16)
70 (21)
80 (27)
80 (27)
80 (27)
65 (18)
60 (16)
50 (10)

- (bb) If the permittee demonstrates that the intake water temperature is within three (3) degrees Fahrenheit below an applicable maximum temperature under subitem (aa), Table 8-6, then no not more than a three (3) degree Fahrenheit exceedance of the maximum water temperature shall be permitted.
- (v) The facilities described as follows that discharge into the open waters of Lake Michigan shall be limited to the amount essential for blowdown in the operation of a closed cycle cooling facility:
- (AA) All facilities that have new waste heat discharges exceeding a daily average of five-tenths (0.5) billion British thermal units per hour. As used in this item, "new waste heat discharge" means a discharge that had not begun operations as of February 11, 1972.
- (BB) All facilities with existing waste heat discharges that increase the quantity of waste heat discharged by more than a daily average of five-tenths (0.5) billion British thermal units per hour.
- (vi) Water intakes shall be designed and located to minimize entrainment and damage to desirable organisms. Requirements may vary depending upon local conditions, but, in general, intakes shall:
- (AA) have minimum water velocity; and shall
- (BB) not be located in spawning or nursery areas of important fishes.

Water velocity at screens and other exclusion devices shall also be at a minimum.

- (vii) Discharges other than those now in existence shall be such that the thermal plumes do not overlap or intersect.
- (viii) Facilities discharging more than a daily average of five-tenths (0.5) billion British thermal units of waste heat shall:
- (AA) continuously record intake and discharge temperature and flow; and
- (BB) make those records available to the public or regulatory agencies upon request.
- (5) The following criteria shall be used to regulate ammonia:
 - (A) Concentrations of total ammonia (as N) shall not exceed the CMC outside the zone of initial dilution or the final acute value (FAV = 2 (CMC)) in the undiluted discharge unless, for a discharge to a receiving stream or Lake Michigan, an alternate mixing zone demonstration is conducted and approved in accordance with 327 IAC 5-2-11.4(b)(4), in which case, the CMC shall be met outside the applicable alternate mixing zone. The CMC of total ammonia (as N) is determined using the following equation:

CMC =
$$\frac{(0.822)(0.52)(10^{(pK_a-pH)}+1)}{(FT)(FPH)(2)}$$

DIN: 20070606-IR-327060573SNA

Where: $FT = 10^{0.03(20-T)}$

FPH = 1; when: $8 \le pH \le 9$; or

$$\frac{1+10^{(7.4-pH)}}{1.25}$$
; when: $6.5 \le pH \le 8$

$$\mathsf{pK}_{\mathsf{a}} \ = \ 0.09018 + \frac{2729}{T + 273.2}$$

T = Temperature in °C

(B) The CCC of total ammonia (as N) is determined using the following equation:

CCC =
$$\frac{(0.822)(0.80)(10^{(pK_a-pH)}+1)}{(FT)(FPH)(RATIO)}$$

Where: FT =
$$10^{0.03(20-T)}$$

FPH = 1; when: $8 \le pH \le 9$; or $\frac{1+10^{(7.4-pH)}}{1.25}$; when: $6.5 \le pH \le 8$
RATIO = 13.5 ; when: $7.7 \le pH \le 9$; or $(20)(10^{(7.7-pH)})$; when: $6.5 \le pH \le 9$

$$pK_a = 0.09018 + \frac{2729}{T + 273.2}$$

T = Temperature in °C

(C) The use of the equations in clause (A) results in the following CMCs for total ammonia (as N) at different temperatures and pHs:

Table 8-7
Criterion Maximum Concentrations for Total Ammonia (as N)

			Tempera	iture (°C)			
рН	0	5	10	15	20	25	30
6.5	28.48	26.61	25.23	24.26	23.64	23.32	23.29
6.6	27.68	25.87	24.53	23.59	22.98	22.68	22.65
6.7	26.74	24.99	23.69	22.78	22.20	21.92	21.90
6.8	25.64	23.96	22.72	21.85	21.30	21.03	21.01
6.9	24.37	22.78	21.60	20.78	20.26	20.01	20.00
7.0	22.95	21.45	20.35	19.58	19.09	18.86	18.86
7.1	21.38	19.98	18.96	18.24	17.80	17.59	17.60
7.2	19.68	18.40	17.46	16.81	16.40	16.22	16.24
7.3	17.90	16.73	15.88	15.29	14.93	14.78	14.81
7.4	16.06	15.02	14.26	13.74	13.42	13.30	13.35
7.5	14.23	13.31	12.64	12.19	11.92	11.81	11.88
7.6	12.44	11.65	11.07	10.67	10.45	10.37	10.45
7.7	10.75	10.06	9.569	9.238	9.052	9.003	9.088
7.8	9.177	8.597	8.181	7.907	7.760	7.734	7.830
7.9	7.753	7.268	6.924	6.701	6.589	6.584	6.689
8.0	6.496	6.095	5.813	5.636	5.555	5.569	5.683
8.1	5.171	4.857	4.639	4.508	4.457	4.486	4.602
8.2	4.119	3.873	3.707	3.612	3.584	3.625	3.743
8.3	3.283	3.092	2.967	2.900	2.891	2.942	3.061

8.4	2.618	2.472	2.379	2.335	2.340	2.399	2.519
8.5	2.091	1.979	1.911	1.886	1.903	1.968	2.089
8.6	1.672	1.588	1.540	1.529	1.555	1.625	1.747
8.7	1.339	1.277	1.246	1.246	1.279	1.353	1.475
8.8	1.075	1.030	1.011	1.021	1.060	1.137	1.260
8.9	0.8647	0.8336	0.8254	0.8418	0.8862	0.9650	1.088
9.0	0.6979	0.6777	0.6777	0.6998	0.7479	0.8286	0.9521

⁽D) The use of the equations in clause (B) results in the following CCCs for total ammonia (as N) at different temperatures and pHs:

Table 8-8
Criterion Continuous Concentrations for
Total Ammonia (as N)
Temperature (°C)

рН	0	5	10	15	20	25	30
6.5	2.473	2.310	2.191	2.106	2.052	2.025	2.022
6.6	2.473	2.311	2.191	2.107	2.053	2.026	2.023
6.7	2.473	2.311	2.191	2.107	2.054	2.027	2.025
6.8	2.473	2.311	2.192	2.108	2.055	2.028	2.027
6.9	2.474	2.312	2.193	2.109	2.056	2.030	2.030
7.0	2.474	2.312	2.193	2.110	2.058	2.033	2.033
7.1	2.475	2.313	2.195	2.112	2.060	2.036	2.037
7.2	2.475	2.314	2.196	2.114	2.063	2.040	2.043
7.3	2.476	2.315	2.198	2.116	2.066	2.044	2.050
7.4	2.477	2.317	2.200	2.119	2.070	2.050	2.058
7.5	2.478	2.319	2.202	2.123	2.075	2.058	2.069
7.6	2.480	2.321	2.206	2.128	2.082	2.067	2.082
7.7	2.450	2.294	2.181	2.106	2.063	2.052	2.071
7.8	2.092	1.959	1.865	1.802	1.769	1.763	1.785
7.9	1.767	1.657	1.578	1.527	1.502	1.501	1.525
8.0	1.481	1.389	1.325	1.285	1.266	1.269	1.295
8.1	1.179	1.107	1.057	1.027	1.016	1.022	1.049
8.2	0.9387	0.8828	0.8450	0.8232	0.8169	0.8263	0.8531
8.3	0.7481	0.7048	0.6762	0.6610	0.6589	0.6705	0.6976
8.4	0.5968	0.5634	0.5421	0.5321	0.5334	0.5468	0.5741
8.5	0.4766	0.4511	0.4357	0.4298	0.4337	0.4485	0.4760
8.6	0.3811	0.3619	0.3511	0.3485	0.3545	0.3704	0.3981
8.7	0.3052	0.2910	0.2839	0.2839	0.2916	0.3083	0.3362
8.8	0.2450	0.2347	0.2305	0.2326	0.2417	0.2591	0.2871
8.9	0.1971	0.1900	0.1881	0.1919	0.2020	0.2199	0.2480
9.0	0.1591	0.1545	0.1545	0.1595	0.1705	0.1889	0.2170

⁽d) This subsection establishes surface water quality for cold-water fish. The waters listed in section 5(a)(3) of this rule are designated as salmonid waters and shall be protected for cold-water fish. In addition to subsections (b) and (c), the following criteria are established to ensure conditions necessary for the maintenance of a well-balanced, cold-water fish community and are applicable at any point in the waters outside of the applicable mixing zone:

⁽¹⁾ Dissolved oxygen concentrations shall not be less than six (6.0) milligrams per liter at any time and shall not be less than seven (7.0) milligrams per liter in areas where spawning occurs during the spawning season and in areas used for imprinting during the time salmonids are being imprinted. Dissolved oxygen concentrations in the open waters of Lake Michigan shall not be less than seven (7.0) milligrams per liter at any time.

⁽²⁾ The maximum temperature rise above natural shall not exceed two (2) degrees Fahrenheit (one and one-tenth (1.1) degrees Celsius) at any time or place and, unless due to natural causes, the temperature shall not exceed the following:

⁽A) Seventy (70) degrees Fahrenheit (twenty-one and one-tenth (21.1) degrees Celsius) at any time.

⁽B) Sixty-five (65) degrees Fahrenheit (eighteen and three-tenths (18.3) degrees Celsius) during spawning

or imprinting periods.

- (e) This subsection establishes bacteriological quality for recreational uses **during the recreational season** as follows:
 - (1) The recreational season is defined as the months of April through October, inclusive.
 - (1) (2) In addition to subsection (b), the criteria in this subsection shall be used to do the following:
 - (A) Evaluate waters for full body contact recreational uses.
 - (B) Establish wastewater treatment requirements. and
 - (C) Establish effluent limits during the recreational season. which is defined as the months of April through October, inclusive.
 - (2) (3) For full body contact recreational uses, E. coli bacteria using membrane filter (MF) count, shall not exceed the following:
 - (A) One hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period. and
 - (B) Two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period.
 - If a geometric mean cannot be calculated because five (5) equally spaced samples are not available, then the criterion stated in subdivision (2)(B) must be met.
 - (4) For demonstrating compliance with wastewater treatment requirements, sanitary wastewater dischargers shall ensure the following:
 - (A) The concentration of E. coli in the undiluted discharge does not exceed one hundred twenty-five (125) cfu or mpn per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.
 - (B) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for E. coli in a calendar month exceed two hundred thirty-five (235) cfu or mpn per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.
 - (5) Effluent limits to implement the criteria in subdivision (3) during the recreational season shall be established in NPDES permits by incorporating the following that are to be applied to the undiluted discharge:
 - (A) The concentration of E. coli in the undiluted discharge shall not exceed one hundred twenty-five (125) cfu or mpn per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.
 - (B) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for E. coli in a calendar month exceed two hundred thirty-five (235) cfu or mpn per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.
- (f) This subsection establishes surface water quality for public water supply. In addition to subsection (b), the following criteria are established to protect the surface water quality at the point at which water is withdrawn for treatment for public supply:
 - (1) The coliform bacteria group shall not exceed the following:
 - (A) Five thousand (5,000) per one hundred (100) milliliters as a monthly average value (either MPN or MF count).
 - (B) Five thousand (5,000) per one hundred (100) milliliters in more than twenty percent (20%) of the samples examined during any month.
 - (C) Twenty thousand (20,000) per one hundred (100) milliliters in more than five percent (5%) of the samples examined during any month.
 - (2) Taste and odor producing substances, other than those naturally occurring, shall not interfere with the production of a finished water by conventional treatment consisting of **the following:**
 - (A) Coagulation.
 - (B) Sedimentation.
 - (C) Filtration. and
 - (D) Disinfection.
 - (3) The concentrations of either chlorides or sulfates shall not exceed two hundred fifty (250) milligrams per liter unless due to naturally occurring sources.
 - (4) The concentration of dissolved solids shall not exceed seven hundred fifty (750) milligrams per liter unless due to naturally occurring sources. A specific conductance of one thousand two hundred (1,200) micromhos per centimeter (at twenty-five (25) degrees Celsius) may be considered equivalent to a dissolved solids concentration of seven hundred fifty (750) milligrams per liter.

- (5) Surface waters shall be considered acceptable for public water supply if radium-226 and strontium-90 are present in amounts not exceeding three (3) and ten (10) picocuries per liter, respectively. In the known absence of strontium-90 and alpha emitters, the water supply is acceptable when the gross beta concentrations do not exceed one thousand (1,000) picocuries per liter. (6) The:
 - (A) combined concentration of nitrate-N and nitrite-N shall not exceed ten (10) milligrams per liter; and the (B) concentration of nitrite-N shall not exceed one (1) milligram per liter.
- (7) Chemical constituents in the waters shall not be present in such levels as to prevent, after conventional treatment, meeting the drinking water standards contained in 327 IAC 8-2, due to other than natural causes.
- (g) This subsection establishes surface water quality for industrial water supply. In addition to subsection (b), the criterion to ensure protection of water quality at the point at which water is withdrawn for use (either with or without treatment) for industrial cooling and processing is that, other than from naturally occurring sources, the dissolved solids shall not exceed seven hundred fifty (750) milligrams per liter at any time. A specific conductance of one thousand two hundred (1,200) micromhos per centimeter (at twenty-five (25) degrees Celsius) may be considered equivalent to a dissolved solids concentration of seven hundred fifty (750) milligrams per liter.
- (h) This subsection establishes surface water quality for agricultural uses. The criteria to ensure water quality conditions necessary for agricultural use are the same as those in subsection (b).
- (i) This subsection establishes surface water quality for limited uses. The quality of waters designated for limited uses under section 19(a) of this rule shall, at a minimum, meet the following criteria:
 - (1) The criteria contained in subsection (b).
 - (2) The criteria contained in subsection (e).
 - (3) The criteria contained in subsection (g).
 - (4) The waters must be aerobic at all times.
 - (5) Notwithstanding subdivisions (1) through (4), the quality of a limited use stream at the point where it becomes physically or chemically capable of supporting a higher use or at its interface with a higher use water segment shall meet the criteria that are applicable to the higher use water.
 - (j) Additional requirements for the open waters of Lake Michigan are as follows:
 - (1) In addition to complying with all other applicable subsections, open waters in Lake Michigan shall meet the following criteria:

Table 8-9 Additional Criteria for Lake Michigan

Parameters Criteria

Dissolved oxygen concentrations shall not be less than seven (7.0) milligrams per liter at Dissolved oxygen

any time at all places outside the applicable mixing zone.

No pH values below six (6.0) or above nine (9.0), except daily fluctuations that exceed pH 9.0 and are correlated with photosynthetic activity, shall be permitted. pН

Chlorides 860 mg/l criterion maximum concentration

230 mg/l criterion continuous concentration

Phenols See subsection (c)(1)

250 ma/l^[1] Sulfates

See 327 IAC 5-10-2 Total phosphorus

750 ma/l^[1] Total dissolved

solids

1.0 mg/l^[1] **Fluorides** 300 ua/l^[1] Dissolved iron

[1] This criterion is established to minimize or prevent increased levels of this substance in Lake Michigan. For the purposes of establishing water quality-based effluent limitations based on this criterion, it shall be treated as a four (4) day average criterion.

(2) During each triennial review of the water quality standards, prior to preliminary adoption of revised rules, the department shall prepare a report for the water pollution control board on the monitoring data for the constituents in the following table (Table 8-10), as measured at the drinking water intakes in Lake Michigan. If

Page 22

these data indicate that the levels of the constituents are either increasing or exceed the levels in the table, the report shall provide available information on the known and potential causes of the increased levels of these parameters, the known and potential impacts on aquatic life, wildlife, and human health, and any recommended revisions of the criteria.

Table 8-10

Parameters	Levels
рН	7.5-8.5 s.u.
Chlorides	
Monthly average	15 mg/l
Daily maximum	20 mg/l
Sulfates	
Monthly average	26 mg/l
Daily maximum	50 mg/l
Total phosphorus	
Monthly average	0.03 mg/l
Daily maximum	0.04 mg/l
Total dissolved solids	
Monthly average	172 mg/l
Daily maximum	200 mg/l

(Water Pollution Control Board; <u>327 IAC 2-1.5-8</u>; filed Jan 14, 1997, 12:00 p.m.: 20 IR 1370; errata filed Aug 11, 1997, 4:15 p.m.: 20 IR 3376; filed Feb 14, 2005, 10:05 a.m.: 28 IR 2074; errata filed Apr 6, 2006, 2:48 p.m.: 29 IR 2546)

SECTION 3. 327 IAC 5-10-6 IS AMENDED TO READ AS FOLLOWS:

327 IAC 5-10-6 Disinfection requirements

Authority: IC 13-13-5; IC 13-14-8; IC 13-14-9; IC 13-15-1-2; IC 13-15-2-1; IC 13-18-3

Affected: IC 13-11-2; IC 13-18-4

Sec. 6. (a) Disinfection is required of all sanitary **wastewater** discharges for the on an annual basis for the period of April 1 through October 31 except multicelled waste stabilization ponds which that are:

- (1) adequately designed and operated; and are
- (2) not either hydraulically or organically overloaded; and as provided
- (3) in sections 3(b) and 4(d) compliance with the provisions of section 3(c) of this rule.
- (b) Disinfection is not required and is not expected to be practiced during the on an annual basis for the period of November 1 through March 31, except as necessary to comply with one (1) or more of the following:
 - (1) ORSANCO requirements (for discharges directly to the Ohio River).
 - (2) The requirements of other states for interstate waters. or
 - (3) The provision of section 4(d) 4(c) of this rule.

In cases where chlorination must be practiced during this period, (such as for example, to maintain sand filters, the maximum effluent limitation for chlorine and monitoring requirements for such chlorine remain in effect.

- (c) The following are requirements for facilities using chlorine or other halogenated compounds as a disinfectant:
 - (1) For those sanitary **wastewater** dischargers designated as minor facilities (generally those with a population equivalent (PE) of less than ten thousand (10,000)), the **following requirements must be met:**
 - (A) Residual chlorine concentration after disinfection (but prior to dechlorination) is to be maintained at a minimum of five-tenths (0.5) milligram per liter.
 - (B) The final effluent must comply with subsection (e).
 - (2) For those sanitary **wastewater** dischargers designated as major facilities (those with a PE of ten thousand (10,000) or greater), **the following requirements must be met:**

- (A) No minimum residual chlorine limitation is applied, so long as the final effluent complies with bacteriological standards based on 327 IAC 2-1-6 or 327 IAC 2-1-5-8, applies.
- (B) The final effluent must comply with subsection (e).

- (3) **Dechlorination is to be practiced** for all:
 - (A) sanitary wastewater discharges using chlorine or bromine compounds as a disinfectant; or for
- **(B)** filter or other equipment maintenance at any time; dechlorination is to be practiced such so that the concentration of total residual chlorine (TRC) or, where bromine is used, TRO in the final effluent does not exceed water quality-based effluent limitations. If these water quality-based limitations are below the LOQ, compliance with such the water quality-based effluent limitations will be determined using the applicable procedures contained under 327 IAC 5-2-11.1 or 327 IAC 5-2-11.6.
- (d) Facilities using a disinfectant other than chlorine or other halogen compounds may not contain E. coli in excess of one hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean nor two hundred thirty-five (235) per one hundred (100) milliliters maximum shall ensure that the final effluent complies with subsection (e) during the disinfection applicable recreation season as indicated in the facility's NPDES permit.
 - (e) Sanitary wastewater dischargers shall ensure the following:
 - (1) The concentration of E. coli in the undiluted discharge does not exceed one hundred twenty-five (125) cfu or mpn per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.
 - (2) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for E. coli in a calendar month exceed two hundred thirty-five (235) cfu or mpn per one hundred (100) milliliters as a daily maximum. Under this subdivision, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.

(Water Pollution Control Board; <u>327 IAC 5-10-6</u>; filed Feb 26, 1993, 5:00 p.m.: 16 IR 1774; filed Jan 14, 1997, 12:00 p.m.: 20 IR 1475; readopted filed Jan 10, 2001, 3:23 p.m.: 24 IR 1518)

DIN: 20070606-IR-327060573SNA

Notice of Public Hearing

Posted: 06/06/2007 by Legislative Services Agency An httml version of this document.